Now a team of researchers at UNSW Sydney has broken new ground in proving that 'spin qubits'—properties of electrons representing the basic units of information in quantum computers—can hold information for up to two milliseconds. Known as 'coherence time', the duration of time that qubits can be manipulated in increasingly complicated calculations, the achievement is 100 times longer than previous benchmarks in the same quantum processor.
"Longer coherence time means you have more time over which your quantum information is stored—which is exactly what you need when doing quantum operations," says Ph.D. student Ms Amanda Seedhouse, whose work in theoretical quantum computing contributed to the achievement.
"The coherence time is basically telling you how long you can do all of the operations in whatever algorithm or sequence you want to do before you've lost all the information in your qubits."
In quantum computing, the more you can keep spins in motion, the better the chance that the information can be maintained during calculations. When spin qubits stop spinning, the calculation collapses and the values represented by each qubit are lost. The concept of extending coherence was already confirmed experimentally by quantum engineers at UNSW in 2016..
Rama Rama hare hare..
No comments:
Post a Comment